JAIPUR EDUCATION PLUS

Not Just Education but Education Plus....

BOARD EXAM SECONDARY EXAMINATIONS, 2012

SECTION-A

Q.1. Write rational number $17 / 8$ in terminating decimal expansion without actually performing the long division.
[Ans. 2.125]
Q. 2 Write the solution of the pair of linear equations $\sqrt{2 x}+\sqrt{3 y}=0$ and $\sqrt{3 \mathrm{x}}-\sqrt{2 \mathrm{y}}=0$.
[Ans. $\mathrm{x}=0, \mathrm{y}=0$]
Q. 3 If $a_{n}=9-5 n$ is nth term of an arithmetic progression (A.P.) the write the common difference.
[Ans. -5]
Q. 4 Write the distance of the point $(-2,9)$ from x axis.
[Ans. 9]
Q. 5 Write the coordination of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in $3: 1$ internally.
[Ans. 3]
Q. 6 If tangents $\mathrm{AB} A C$ from a point A to a circle with centre O are such that $\mathrm{BOC}=140^{\circ}$ then write the value of BAC.
[Ans. 40°]
Q. 7 Write the area of a sector of angle d° of a circle with radius R.[Ans. $\left.R^{2} \quad / 360\right]$
Q. 8 A tangent PQ at a point of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=13 \mathrm{~cm}$ then find the length of PQ .[Ans. 12 cm]
Q. 9 A die is thrown once then what is the probability of getting prime number.[Ans. $1 / 2$]
Q. 10 A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag what is the probability that the ball drawn is not black? [Ans 3/8]

SECTION-B

Q. 11 ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{OC}$ and its diagonals intersect each other at the point O . Prove that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$. [Ans. $\frac{\mathrm{AO}}{\mathrm{OB}}=\frac{\mathrm{CO}}{\mathrm{OD}}$]
Q. 12 Two tangents AB and AC are drawn to a circle with a circle with centre O from an external point A. Prove that $B A C=2 O B C$.
Q. 13 In a circle of radius 21 cm , an are subtends an angle 60° at the centre. Find the area of the corresponding major sector.
[Ans. $1155 \mathrm{~cm}^{2}$]
Q. 14 Two circular flower beads lie on two sides AB and CD of a square lawn $A B C D$ of side 56 m . If the centre of each circular flower bed is the point of intersection O of the diagonals of the square lawn. Find the sum of the areas of the lawn and the flower beds.
[Ans. $4032 \mathrm{~m}^{2}$]
Q. 15 Two dice are thrown at the same time. What is the probability that the sum of the two members appearing on the dice is 7 .
[Ans. 1/6]

SECTION-C

Q. 16 What is Euclid's Division lemma? Use this to find the highest common factor (HCF) of the numbers 196, 3820.
Q. 17 On dividing polynomial $x^{3}-3 x^{2}+x+2$ by a polynomial were $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$ respectively. Then find the function $\mathrm{g}(\mathrm{x})$.

$$
\left[\text { Ans. } g(x)=x^{2}-x+1\right]
$$

Q. 18 Find the roots and their nature of the quadratic equation $3 \mathrm{x}^{2}-4 \sqrt{3 \mathrm{x}}+4=0$.
[Ans. $\frac{2 \sqrt{3}}{3}$]
Q. 19 The sum of the reciprocals of Rehman's ages (in years) 3 years ago and 5 years from now is $\frac{1}{3}$. Find the present age.
[Ans. 7 years]
Q. 20 Find the sum of the numbers between 1 to 100 divisible by 6 .
[Ans. 816]
Q. 21 Find the point on the x -axis which is equidistant from the points $\mathrm{A}(6,5)$ and $B(-4,5)$.
[Ans. (1, 0)
Q. 22 If the points $\mathrm{A}(6,1), \mathrm{B}(8,2), \mathrm{C}(9,4)$ and $\mathrm{D}(\mathrm{x}, \mathrm{y})$ are the vertices of a parallelogram, taken in order. Find the point $D(x, y)$. [Ans. Point $D=(7,3)$
Q. 23 If $\tan \mathrm{A}=\frac{3}{4}$ then find the value of $\sec \mathrm{A}(1-\sin \mathrm{A})(\sec \mathrm{a}+\tan \mathrm{A}) \quad$ [Ans. 1]
Q. 24 Two poles of equal heights are standing opposite to each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.[Ans. 20 m and 60 m]
Q. 25 Draw a line segment AB of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and constant the pair of tangents to the circle from point B and measure their lengths.

SECTION-D

Q. 26 Draw a graphs of the linear equations $\mathrm{x}-\mathrm{y}+1=0$ and $3 \mathrm{x}+2 \mathrm{y}-12=0$. Determine the co-ordinates of the vertices of triangle formed by these lines and the x -axis, and shade the triangular region.
Q. 27 BL and CM are medians of a right angled triangle ABC and $\mathrm{A}=90^{\circ}$ then prove that $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$.
Q. 28 Prove that $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \quad \operatorname{cosec}$

OR
Q. 28 Prove that $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan$
Q. 29 Container shaped like a right circular cyllinder having diameter 12 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled into cones of height 12 cm and diameter 6 cm , having a hemispherical shape on the top. Find the number of such cones which can be filled with ice-cream. [Ans. 10]
Q. 30 During the medical checkup of 30 students of a class their weights were recorded as follows. Find the mean weight of the students:

Wight (in kg)	$40-$ 45	$45-$ 50	$50-$ 55	$55-$ 60	$60-$ 65	$65-$ 70	$70-75$
No. of Students	2	3	8	6	6	3	2

OR
Q. 30 The median of the following data is 525 . Find the x and y , if the total frequency is 100 :

Class- interval	$0-100$	$100-200$	$200-$ 300	$300-$ 400	$400-$ 500
Frequency	2	5	x	12	17

Class- interval	$500-$ 600	$600-700$	$700-$ 800	$800-$ 900	$900-$ 1000
Frequency	20	Y	9	7	4

[Ans. $x=9, y=15]$

