Not Just Education but Education Plus....
(P.No. 51, First floorLane No. 3, Moti Nagar, Queen's Road)

Mob.: 7615012588, 9929544574

Email: jaipureducationplus@gmail.com www.jaipureducationplus.com

SUMMATIVE ASSESSMENT-II

MATHEMATICS CBSE PAPER Class - X

Time allowed: 3 hours Maximum Marks: 90

General Instructions:

(a) -1,0-1,2,...

a)	All o	questions	are	compu	ılsorv.
ω,		1400010110	410	COMP	

- b) The question paper consists of 31 questions divided into four sections A, B, C and D.
- c) Section A contains 4 questions of 1 mark each which are multiple choice questions, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
- d) Use of calculator is not permitted.

Section A

The first four terms of an AP, where first term is -1 and the common difference is -1, are

(b) $-1, -2, -3, -4, \dots$

	(c) $-1, -2, -4, -8$,-16,	(d) $-1, 2, -3, 4, \dots$					
2.	If two towers of height x and y subtend angles of 30° and 60° respectively at the centre of a							
	line joining their feet, then $x:y$ is equal to:							
	(a) 1:3	(b) 3:1	(c) $1:\sqrt{3}$	(d) $\sqrt{3}:1$				
2	A -1-11-1/	0 1 6 1.1			c 1:1 c			

- 3. A child's game is 8 triangles of which 3 are green and rest are pink and 10 squares of which 6 are green and rest are pink. One piece is list at random. The probability that it is a triangle of green colour is:
 - (a) $\frac{1}{3}$

1.

- (b) $\frac{1}{6}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{2}$
- 4. The value of *a* so that the point (3,a) lies on the line 2x-3y=5 is:
 - (a) 12
- (b) 3
- (c) $\frac{1}{2}$
- (d) $\frac{1}{3}$

Section B

- 5. Find the value of p for which the roots of quadratic equation $3x^2 px + 3 = 0$ are real where p > 0.
- 6. Find the first four terms of an AP whose first term is -3 and the common difference is -3.
- 7. In figure, calculate OB.

- 8. The length of the minute hand of a clock is 6 cm. Find the area swept by the minute hand during the time period 8:05 am and 8:45 am.
- 9. An underground water tank is in the form of a cuboid of edges 48 m, 36 m and 28 m. Find the volume of the tank.
- 10. The base radius and height of a right circular solid cone are 2 cm and 8 cm respectively. It is melted and recast into spheres of diameter 2 cm each. Find the number of spheres so formed.

Section C

11. Solve for x: $6x^2 - \sqrt{2}x - 2 = 0$

- 12. Which term of the AP 4, 12, 20, 28, will be 120 more than its 21st term?
- 13. In the figure, 0 is the centre of the circle and PT is a tangent at T. If PC = 3 cm and PT = 6 cm, then calculate the radius of the circle.

- 14. The angle of elevation of the top of the hill at the foot of the tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If the tower is 50 m high, then find the height of the hill.
- 15. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting:

(i) a king of red colour

(ii) a face card

(iii) a red face card

(iv) the jack of hearts

(v) a spade

(vi) the queen of diamonds

- 16. Two vertices of a triangle ABC are given by A (2, 3) and B(-2,1) and its centroid $G\left(1,\frac{2}{3}\right)$. Find the coordinates of the third vertex C of the \triangle ABC.
- 17. Determine the ratio in which the point P(m,6) divides the join of A(-4,3) and B(2,8). Also find the value of m.

18. AB is a chord of a circle of radius 10 cm. The chord subtends a right angle at the centre of the circle. Find the area of the minor segment. (Use $\pi = 3.14$)

19. The figure given below represents a sector of a circle of radius r cm making an angle θ . The area of the sector is A cm² and the perimeter of the sector is 60 cm. Prove that:

(i)
$$\theta = \frac{360^{\circ}}{\pi} \left(\frac{30}{r} - 1 \right)$$

(ii)
$$A = 30r - r^2$$

20. The radii of the bases of two right circular solid cones of same height r_1 and r_2 respectively. The cones are melted and recast into a solid sphere of radius R. Show that the height of each cone is given by $h = \frac{4R^3}{r_1^3 + r_2^3}$.

Section D

- 21. Solve for x: $(a-b)x^2 + (b-c)x + (c-a) = 0$
- 22. The sum of the squares of two consecutive off numbers is 394. Find the numbers.
- 23. The sum of first six terms of an AP is 42. The ratio of its 10^{th} term to its 30^{th} term is 1:3. Calculate the first and the thirteenth term of the AP.
- 24. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
- 25. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisect the arc PRQ.
- 26. Draw a \triangle LMN with \angle M = 90°, MN = 6 cm and NL = 8 cm. Construct another triangle similar to \triangle LMN, such that each of its side is $\frac{4}{7}th$ of corresponding sides of \triangle LMN.
- 27. From an aeroplane vertically above a straight horizontal plane, the angles of depression of two consecutive kilometer stones on the opposite sides of the aeroplane are found to be α and β . Show that the height of the aeroplane is $\frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$.

- 28. A child's game has 8 triangles of which 3 are blue and rest are red and 10 squares of which 6 are blue and rest are red. One piece is lost at random. Find the probability that it is a:
 - (i) triangle

(ii) square

(iii) square of blue of colour

- (iv) triangle of red colour
- 29. If $D\left(\frac{-1}{2}, \frac{5}{2}\right)$, E(7,3) and $F\left(\frac{7}{2}, \frac{7}{2}\right)$ are the mid-points of sides of Δ ABC, then find the area of the Δ ABC.
- 30. Two types of water tankers are available in a shop. One is in a cubic form of dimensions $1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$ and another is in the form of cylindrical form of diameter 1 m and height is also 1 m. The shopkeeper advises to purchase cuboid tank to a customer.
 - (i) Calculate the volume of the both tankers.
 - (ii) Which value is depicted by the shopkeeper?

[Value Based Question]

31. A tent is in the form of a cylinder of diameter 4.2 m and height 4 m, surmounted by a cone of equal base and height 2.8 m. Find the capacity of the tent and the cost of canvas for making the tent at Rs.100 per sq. m.