Not Just Education but Education Plus....

(P.No. 51, First floorLane No. 3, Moti Nagar, Queen's Road)
Mob.: 7615012588, 9929544574
Email: jaipureducationplus@gmail.com

www.jaipureducationplus.com

)

TIME ALLOWED : 3 HRS M.M. = 90

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into four sections A, B, C and D.
- (iii) Section A contains 8 questions of 1 marks each, which are MCQ. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 10 questions of 4 marks each.
- (iv) There is no overall choice in the paper. However, internal choice is provided in one question of 2 marks, three question of 3 marks and two questions of 4 marks.
- (v) Use of calculator is not permitted.

SECTION - A

Choose the correct option

- 1. The roots of a quadratic equation $px^2 + 6x + 1 = 0$ have real roots then value of p is
 - (A) p≥9
- (B) p<9
- (C) p≤9

- (D) None of these
- 2. The number of terms in the AP 7,13, 19,, 205 are
 - (A) 35
- (B) 36
- (C) 38

(D) 34

- 3. For what value of k, 10, k-2 are in A.P.
 - (A) k=4
- (B) k=3
- (C) k=2

- (D) k=1
- 4. In the figure given, PA= 4 cm, AB= 9 cm, then value of PT is

- (A) 9 cm
- (B) 4 cm
- (C) 6 cm

- (D) None of these
- 5. The height of a tower is $\sqrt{3}$ times of its shadow. The angle of elevation of the source of height is
 - (A) 30^{0}
- (B) 60°
- (C) 45°

(D) None of these

- 6. The probability of selecting a queen of hearts is
 - (A) $\frac{1}{4}$
- (B) $\frac{1}{52}$
- (C) $\frac{1}{13}$

- (D) $\frac{12}{13}$
- 7. If the points P(1,2), Q(0,0) and R(a,b) are collinear, then
 - (A) a=b
- (B) a=2b
- (C) 2a=b

- (D) a= b
- 8. A cone , a hemisphere and a cylinder stand on equal bases and have the same height then their volumes are in the ratio of
 - (A) 3:1:2
- (B) 1:2:3
- (C) 2:1:3

(D) 3:2:1

SECTION - B

- 9. Find the value of k, so that the quadratic equation kx(x-2) + 6 = 0 has two equal roots.
- 10. In the figure, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB= 6 cm, BC = 9 cm and CD = 8 cm. Find the length of side AD.

- 11. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
- 12. Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that $\frac{AP}{AB} = \frac{3}{5}$
- 13. Two cubes each of volume 64 cm3 are joined end to end. Find the surface area of the resulting cuboid.

OR

A sphere of radius 8 cm is melted and recast into a right circular cone of height 32 cm. Find the radius of the base of the cone.

14. Calculate the area of the shaded region shown in the figure.

SECTION - C

- 15. Find the roots of the quadratics equation $3x^2 4\sqrt{3}x + 4 = 0$
- 16. The sum of three numbers of AP is 3 and their product is -35. Find the numbers. OR Which term of the AP 3, 10, 17, will be 84 more than its 13th term?
- 17. In the given figure, AOC is a diameter of the circle. If AB= 7cm, BC = 6 cm and CD = 2cm. Find the perimeter of the cyclic quadrilateral ABCD.

- 18. Draw a pair of tangents to a circle of radius 3 cm, which are inclined to each other at an angle of 60° .
 - Draw a right triangle in which the sides(other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are $\frac{3}{5}$ times the corresponding sides of the given triangle.
- 19. The shadow of a tower standing on a level ground is found to be 40m longer when the sun's altitude is 30° than when it is 60° . Find the height of the tower.
- 20. A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, determine the number of blue balls in the bag.

What is the probability that a leap year, selected at random will contain 53 Sundays?

- 21. Find the ratio in which the segment joining the points (-3,10) and (6,-8) is divided by (-1,6)
- 22. Find the area of the quadrilateral whose vertices taken in order are (-4,-2); (-3,-5); (3,-2);(2,3)
- 23. The circumference of a circle is 88 cm. Find the area of the sector, whose angle at the centre is 45°.
- 24. A drinking glass is in the shape of a frustum of a cone of height 14 cm. The diameters of its two circular ends are 4 cm and 2 cm. Find the capacity of the glass.

SECTION - D

25. Solve for x.

$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}, \ a+b \neq 0$$
OR

A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.

- 26. Find the sum of all natural numbers between 250 and 1000 which are exactly divisible by 3.
- 27. Which term of the sequence 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$,... is the first negative term?
- A circle is touching the side BC of ΔABC at P and touching AB and AC produced at Q and R respectively. Prove that AQ = ½ (Perimeter of ΔABC)
 OR
 If all the side of a parallelogram touch a circle, show that the parallelogram is a rhombus.
- 29. From the top of a building 60m. high the angles of depression of the top and the bottom of a tower are observed to be 30° and 60° . Find the height of the tower.
- 30. The king, queen and jack of clubs are removed from a deck of 52 playing cards and the well shuffled. One card is selected from the remaining cards. Find the probability of getting
 (i) a king (ii) a heart (iii) a club (iv) the '10' of hearts.
- 31. Find the value of 'k' for the points (7,-2); (5,1); (3,k); are collinear
- 32. A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately, how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.
- 33. Water is flowing at the rate of 5 km/hr through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Determine the time in which the level of the water in the tank will rise by 7 cm.
- 34. A toy is in the form of a cone mounted on hemisphere of diameter 7 cm. The total height of the toy is 14.5 m. Find the volume and the total surface area of the toy.

SA-II

MARKING SCHEME

CLASS-X (MATHS)

EXPECTED ANSWERS/VALUE POINTS

MARKING SCHEME FOR SA-2

	SECTION-A	
Q. No.	Solution	Marks
1.	(C)	1
2.	(C) (D)	1
3.	(A)	1
3. 4.	(C)	1
4. 5.		1
	(B)	1
6.	(B)	
7.	(C)	1
8.	(B)	1
0	SECTION - B	4
9.	Since, we know that for equal roots	1
	D=0	
	Or, b^2 -4ac=0	
	Or, $(-2k)^2 - 4 \times k \times 6 = 0$	_
	Or, $4k^2-24k=0$	1
	Or, 4k(k-6)=0	
	Or, 4k=0, or k-6=0	
	Or, k=0, or k=6	
	Or, k=0, 6 Ans.	
10.	Here the circle touches the all sides of the Quadrilateral	1
	So, AB+CD=AD+BC	
	Or, 6+8=AD+9	1
	Or, $AD=14-9=5$ cm Ans.	
11.	Required Fig., Given and to prove	1
	Proof:	1
12.	Drawing \overline{AB} =7cm	1
	Correct division by any method	
	Correct location of point i.e; AP/AB=3/5	1
13.	vol. of the cube=side ³	1 1
13.	2	1
	$\therefore \text{ side of the cube} = \sqrt[3]{64} \qquad = 4\text{cm}$	4
	Now S.A of the resultant cuboid=2(lb+bh+hl)	1
	=2(8x4+4x4+4x8)	
	=2(32+16+32)	
	=2(80)	
	$=160~\mathrm{cm}^2~\mathrm{Ans}.$	
	Or	1
	By question	
	Vol.of the cone = vol.of the sphere	
	Or, $1/3\pi r^2 h$ = $4/3\pi R^3$	
	Or, $r^2x32 = 4x8x8x8$	1
	∴ r = 8cm	
	so, the radius of the base of the cone=8cm Ans.	
14.	Ar. of the shaded portion = $\frac{\theta}{360}$ X π (R ² -r ²)	1
	$=(60/360) \times (22/7) (7^2-4^2)$	
	(

		Jaipur Ed
	=1/6 x 22/7 x33	1
1 5	$= 17.28 \text{cm}^2 \text{ Ans.}$	1
15.	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ and putting the correct value}$	
	$-(-4\sqrt{3})\pm\sqrt{(-4\sqrt{3})^2-4} \times 3 \times 4$	1
	$={2 \times 3}$	
	$=\frac{4\sqrt{3}\pm 0}{6}$	1
	$=\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ Ans	
16	Let the three nos. of the AP are	1
16.		1
	α - β , α , α + β By queston,	1
	α - β + α + α + β =3	1
	or, $3\alpha = 3$	
	$\alpha = 1$	
	And $(\alpha-\beta) \times \alpha \times (\alpha+\beta)=-35$	1
	or, $\alpha(\alpha^2-\beta^2)=-35$)
	Putting the value of α =1 then	
	$1(1-\beta^2)=-35$	
	or, $-\beta^2 = -36$	
	or, $\beta = \pm 6$	
	hence the no. are 7,1,-5,or,-5,1,7 respectively. Ans.	
	Or	
	Here t ₁₃ =a+12d	1
	=3+12(7)	
	= 87	
	Let $t_n = t_{13} + 84$	1
	or, a+(n-1)d=87+84	
	or, 3 + (n-1)7= 171	
	or, (n-1)=168/7=24	1
	or, n=25 ∴ the required term=25 th Ans.	
17.	∴ the required term=25 th Ans. Since, AOC is a diameter of the circle.	1
17.	$\therefore \angle ABC = 90^{\circ}$	1
	so, in right triangle ABC	
	$AC^2=7^2+6^2$	
	=85	
	Similarly, $\angle ADC=90^{\circ}$	1
	So, in right triangle ADC	
	$AD^2=AC^2-CD^2$	
	=85-4	
	=81	
	∴ AD=9 cm	
	So, the perimeter of the cyclic Quad.ABCD=(7+6+2+9) cm	1
	=24cm Ans.	_
18.	Constructing 120 ⁰ at the centre with radii	1
	Drawing tangents at the end of radii	1
	Angle 60 ⁰ between both tangents at the intersection point Or	1
	For drawing correct triangle	1
	For correct construction steps for making similar triangle	1
	Required triangle whose sides are 3/5 times the corresponding sides	1
	,	_

For correct figure.

In triangle ABC, $\tan 60^{\circ} \frac{AB}{BC}$

Or
$$\sqrt{3} = \frac{h}{BC}$$

$$\sqrt{3} = \frac{h}{x}$$

$$\therefore$$
 h = $\sqrt{3} x$

Now in triangle ABD

$$\tan 30^0 = \frac{h}{40 + x}$$

or,
$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}x}{40+x}$$

or, $x = 20$

∴
$$h=20\sqrt{3}m$$
 Ans.

20 Here, no. Of red balls=5

let no. Of blue balls = x

 \therefore Total no. of balls = (5 + x)

By question,

$$P(B) = 2P(R)$$
or,
$$\frac{x}{5+x} = 2\left(\frac{x}{5+x}\right)$$
or,
$$x = 10$$

so, No. Of blue balls=10 Ans.

OT In a leap year =366 days= 52 weeks and 2 days The remaining two days can be

- (i) SUN, MON
- (v) THU, FRI
- (ii) MON, TUE
- (vi) FRI, SAT
- (iii) TUE, WED
- (vii) SAT, SUN
- (iv) WED, THU

There are total seven possibilities i.e. n (s) = 7 and n(E) = 2 i.e. SUN, MON & SAT, SUN

$$\therefore P(E) = \frac{n(E)}{n(s)} = \frac{2}{7} \text{ Ans.}$$

21.

By question,
$$-1 = \frac{6k-3 X}{k+1}$$

$$k = \frac{2}{7}$$

Hence required ration is 2:7

1

1

1

1

1

1

1

1

1

1

1

22.

Ar. Of
$$\triangle ABC = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$= \frac{1}{2}[-4(-5+2) + (-3)(-2+2) + (-4)(-2-3]$$

$$= \frac{21}{3} unit^2$$

Ar. Of
$$\triangle CDA = \frac{1}{2}[3(3+2) + 2(-2+2) + (-4)(-2-3)]$$

= $\frac{35}{2} unit^2$

so, Ar. Of qua. ABCD = $\frac{21}{2} + \frac{35}{2} = 28 unit^2$ Ans.

23. Since, the Circumference of the circle = 88 cm 1 or, $2\pi r = 88$

$$\therefore r = \frac{88 X 7}{44} = 14 cm$$

Ms.co So, Ar. of the required sector = $\frac{\theta}{360}\pi r^2$ = $\frac{45}{360}X\frac{22}{7}X14X14$ = 77 cm^2 1 1

Vol. Of Glass (Shaped frustum of a cone) = $\frac{1}{3}\pi(R^2 + r^2 + Rr)h$ 1 $= \frac{1}{3} X \frac{22}{7} (2^2 + 1^2 + 2 X 1) 14$ = $\frac{1}{3} X \frac{22}{7} X 7 X 14$ 1 1 $=102.67 cm^3$

SECTION - D

25.
$$\frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$
or,
$$\frac{x-(a+b+x)}{x(a+b+x)} = \frac{a+b}{ab}$$
or,
$$\frac{-(a+b)}{x(a+b+x)} = \frac{a+b}{ab}$$
or,
$$x(a+b+c) + ab = 0$$
or,
$$x^2 + ax + bx + ab = 0$$
or,
$$x(x+a) + b(x+a) = 0$$
or,
$$(x+a)(x+b) = 0$$

$$x = -a \text{ or } x = -b \text{ Ans.}$$

Or

Let the usual speed of the plane be x km/hr.

Then, By question,

$$\frac{1500}{x} - \frac{1500}{x + 250} = \frac{1}{2}$$
or, $x^2 + 250x - 750000 = 0$

1

or, (x + 1000)(x - 7500 = 0)1

Or, x = -1000 (rejected) or, x = 7501

Hence, the usual speed of the plane is 750 km/hr. Ans.

26. Required nos. are 252,255, 258,999 1

Here, a + (n-1)d=9991

or, 252 + (n-1)3=999 1 ∴ n = 250

So, Required sum = $s_n = \frac{n}{2} \{a + l\} = \frac{250}{2} (252 + 999) = 156375$. Ans. 1

27. Let the nth term of the given AP be the first negative term. 1

Then $a_n < 0$

or, a +(n-1)d<0 1 or, 20 +(n-1) $\left(-\frac{3}{4}\right)$ < 0

or, 83 -3n <0

1

1

1

or,
$$n > \frac{83}{3}$$

or, $n > 27_3^2$

∴n ≥28

Thus, 28th term of the given sequence is the first negative term. Ans.

28. Required fig.

Since, tangents from an external point to a circle are equal in length

And, AQ = AR -----(iii)

or,
$$AB + BQ = AC + CR$$

or,
$$AB + BP = AC + CP$$

Now, Perimeter of $\triangle ABC = AB + BC + AC$

$$=$$
 AB + (BP +PC) + AC

$$= (AB + BP) + (AC + PC)$$

 $\therefore AQ = \frac{1}{2}(Perimeter\ of\ \Delta ABC) \quad \text{Proved}.$

Required fig.

We know that the tangents to a circle from an external point are equal in length.

$$\therefore AP = AS -----(i)$$

Adding (i), (ii), (iii) & (iv), we get

$$(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ)$$

or,
$$AB + CD = AD + BC$$

so,
$$AB = BC = CD = AD$$

 \Rightarrow ABCD is a rhombus. Proved.

29. For correct fig.

Let AB = Building, CD = Tower

In,
$$\triangle DEB$$
,

$$\tan 30^0 = \frac{BE}{DE}$$

1

R EDUCATION PLUS

or,
$$\frac{1}{\sqrt{3}} = \frac{60-h}{x}$$

 $\therefore x = (60-h)\sqrt{3} - - - - (i)$

In,
$$\triangle CAB$$
,
$$\tan 60^0 = \frac{AB}{CA}$$

1

1

1

$$\tan 60^{0} = \frac{AB}{CA}$$
or, $\sqrt{3} = \frac{60}{x}$

$$\therefore x = \frac{60}{x}$$

 $(60-h)\sqrt{3} = \frac{60}{\sqrt{3}}$

Thus, the height of the tower is 40m. Ans.

- 30 Here, n(s) = 49
- (i) $P(E_1) = \frac{n(E_1)}{n(s)} = \frac{3}{49}$ (ii) $P(E_2) = \frac{n(E_2)}{n(s)} = \frac{13}{49}$ (iii) $P(E_3) = \frac{n(E_3)}{n(s)} = \frac{10}{49}$ (iv) $P(E_4) = \frac{n(E_4)}{n(s)} = \frac{1}{49}$ 31 Three points are collinear if $\frac{1}{2}[x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)]$ 1
 - or, $\frac{1}{2}[7(1-k) + 5(k+2) + 3(-2-1)] = 0$ 1
 - or, -2k + 8 = 01 1
 - or, k=4
 - $\therefore k = 4$ Ans.

32. For correct Fig.

Vol. of 1 Gulab Jamun= Vol. of cylindrical part + 2(Vol. of hemispherical part)

- $=\pi r^2 h + 2\left(\frac{2}{3}\pi r^3\right)$
- $= \pi r^2 + \left(h + \frac{4}{3}r\right)$
- $= \frac{22}{7} \times 1.4 \times 1.4 \left[2.2 + \frac{4}{3} \times 1.4\right]$

So, vol. of 45 gulab jamuns = $45 \times 25.05 = 1127.28 \text{ cm}^3$

Hence, Vol. of sugar syrup = $30/100 \times 1127.28 = 338.18 \text{ cm}^3 = 338 \text{ cm}^3$ (approx.)

1

33 Let the level of the water in the tank will rise by 7cm in x hrs

So, vol of the water flowing through the cylindrical pipe in x hrs = $\pi r^2 h$

1

1

$$= \frac{22}{7} \times \left(\frac{7}{100}\right)^2 \times 5000 \text{ x m}^3$$

= 77 x m³

Also, Vol of water that falls into the tank in x hrs = 50 x 44 x $\frac{7}{100}$ m³ = 154 m³

By ques 77 x = 154

x = 2

So, the level of the water in the tank will rise by 7 cm in 2 hours

EDUCATION PLUS

34

for correct figure 1 marks

Radius of hemisphere = 7/2 = 3.5 cm

Height of cone = (14.5 - 3.5)

=11cm

Slant height of cone = $\sqrt{r^2 + h^2}$

$$=\sqrt{(3.5)^2+(11)^2}$$

$$= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$$

$$=\frac{1}{3}\pi r^2(2r+h)$$

=11cm Slant height of cone =
$$\sqrt{r^2 + h^2}$$
 = $-\sqrt{(3.5)^2 + (11)^2}$ = 11.55 cm Now, vol of toy = Vol of hemisphere + Vol of cone = $\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$ = $\frac{1}{3}\pi r^2 (2r + h)$ = $\frac{1}{3}\pi r^2 (2r + h)$ = $\frac{1}{3}\pi r^2 \sqrt{2} \times \frac{7}{2} \times \frac{7}{2} (2 \times \frac{7}{2} + 11)$ cm³ = 231 cm And, TSA of the Toy = SA of hemisphere + SA of cone = $2\pi r^2 + \pi r l$ = $\pi r (2r + l)$ = $\frac{22}{7} \times \frac{7}{2} (2 \times \frac{7}{2} + 11.55)$ = 204.05 cm²

$$= 2 \pi r^2 + \pi r l$$

$$=\pi r(2r+l)$$

$$=\frac{22}{7}\times\frac{7}{2}(2\times\frac{7}{2}+11.55)$$

1