Not Just Education but Education Plus....
(P.No. 51, First floorLane No. 3, Moti Nagar, Queen's Road)

Mob. : 7615012588, 9929544574
Email: jaipureducationplus (Q) ${ }^{\text {email.com }}$
www.jaipureducationplus.com

CBSE Sample Paper-03

Time allowed: 3 hours
Mathematics

General Instructions:

a) All questions are compulsory.
b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
d) Use of calculators is not permitted.

Section A

1. Is R defined on the set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y): y$ is divisible by $x\}$ symmetric.
2. Calculate the direction cosines of the vector $\vec{a}=3 i-2 j-5 k$.
3. What is the principal value branch of $\cos ^{-1} x$?
4. Find X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right], X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
5. Evaluate without expanding $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$.
6. Find $A^{\prime}=\left[\begin{array}{lll}-2 & 4 & 5\end{array}\right], B^{\prime}=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$ find $(A B)^{\prime}$.

Section B

7. Using properties of determinants prove that
$\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b$
8. Find the equations of all lines having slope 0 and that are tangent to the curve $y=\frac{1}{x^{2}-2 x+2}$.
9. If $f(x)=\frac{x-1}{x+1},(x \neq 1,-1)$, show that $f \circ f^{-1}$ is an identity function.
10. Find $\frac{d y}{d x}$ if $\log (x y)=x^{2}+y^{2}$.
11. Prove that $\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),|x|<\frac{1}{\sqrt{3}}$
12. If A, B, C have the co-ordinates $(2,0,0),(0,1,0),(0,0,2)$, then show that $A B C$ is an isosceles triangle.
13. (a)If A and B are two events defined on a sample space s.t.
$P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}, P\left(B^{c}\right)=\frac{1}{3}$, find $P(A)$.
(b) If A and B are two events defined on a sample space s.t.
$P(A)=\frac{1}{4}, P(B)=\frac{1}{2}, P(A$ and $B)=\frac{1}{8}$, find $P($ not A and not $B)$.
14. Find all intervals on which the function $f(x)=-2 x^{3}-9 x^{2}-12 x+1$ is (a)strictly increasing (b) strictly decreasing.
15. Solve the differential equation $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
16. Show that $(|\vec{a}| \vec{b}+|\vec{b}| \vec{a}) \cdot(|\vec{a}| \vec{b}-|\vec{b}| \vec{a})=0$
17. Integrate $\int \log \left(1+x^{2}\right) d x$.
18. Find theshortest distance between the lines l_{1} and l_{2} given by :

$$
\begin{aligned}
& \vec{r}=(i+2 j+k)+\lambda(i-j+k) \\
& \vec{r}=(2 i-j-k)+\mu(2 i+j+2 k)
\end{aligned}
$$

19. Find the vector equation of the plane passing through the points $i+j-k$ and $2 i+6 j+k$ and parallel to the line $\vec{r}=(3 i-5 j+k)+\lambda(i-2 j+k)$

Section C

20. A factory can hire two tailors A and B in order to stich pants and shirts. Tailor A can stich 6 shirts and 4 pants in a day. Tailor B can stich 10 shirts and 4 pants in a day. Tailor A charges 15 per day and tailor B charges 20 per day. The factory has to produce minimum 60 shirts and 32 pants. State as a linear programming problem and minimize the labour cost.
21. Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
22. A, Band C play a game and the chances of winning in it in an attempt are $2 / 3,1 / 2,1 / 4$ respectively. A has the first chance, followed by Band C. The cycle is repeated till one of them wins the game. Find their respective chances of winning the game.
23. If $x=a \sec ^{3} \theta, y=a \tan ^{3} \theta$, find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{4}$.
24. Integrate $\int \frac{x^{2} d x}{(x+3) \sqrt{3 x+4}}$
25. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.
26. Solve the following system of equations using matrix method

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-y+z=-1 \\
& 2 x+y-3 z=-9
\end{aligned}
$$

