JAIPUR EDUCATION PLUS

Not Just Education but Education Plus....
(P.No. 51, First floorLane No. 3, Moti Nagar, Queen's Road)

Mob.: 7615012588, 9929544574
Email: jaipureducationplus Q_{Q}.mail com
www.jaipureducationplus.com

Practice Paper No.-2
 (Pattern of Secondary Education Board)

SECTION-A

Q. 1 Find the H.C.F. of numbers 595and 635.
Q. 2 Solve the pair of linear equation $\frac{x}{2}+\frac{2 y}{3}=-1$ and $x-\frac{y}{3}=3$.
Q. 3 If the first term of an A.P. is a and its common difference is d. Write the formula sum of $\mathrm{n}^{\text {th }}$ term.
Q. 4 Find the distance of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the origin.
Q. 5 Find the relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$.
Q. 6 A tangent AB at a point A of a circle of radius 5 cm meets a line through the centre O at a point B, so that $A B=13 \mathrm{~cm}$, then find the length of $A B$.
Q. 7 What is called the common point of a tangent to a circle.
Q. 8 Draw a pair of tangents to a circle of radius 5 cm which are in lined to each other at an angle of 600. (Draw figure only)
Q. 9 The probability that it will cold today is 0.36 . What is that it will not cold today.
Q. 10 A die is thrown once than what is the probability of getting even number?

SECTION-B
Q. 11 In figure $\frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{SR}}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$. Prove that $\triangle \mathrm{PQR}$ is an isosceles triangle.

Q. 12 Two concentric circles are of radii 5 cm 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.
Q. 13 A circle is inscribed in a square of side 14 cm . Find the arc of the square not inclined in the circle. [2]
Q. 14 A chord of a circle of radius 12 cm substands an angle of 120° at centre. Find the area of the corresponding segment of the circle.
Q. 15 One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting.
(i) A king of red colour.
(ii) The jack of hearts.

SECTION-C

Q. 16 Show that 5 is irrational.
Q. 17 If two zeroes of the polynomial $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeros of t polynomial.
Q. 18 Find two consecutive odd positive integers sum of whose squares in 290.
Q. 19 Find the root and their nature of the quadratic equation. $15 \mathrm{x}^{2}-28=\mathrm{x}$.
Q. 20 How many terms of the A.P. 3, 5, 7, 9, .. must be added to get the sum 120?
Q. 21 Find those points on the x-axis, each of which is at a distance of 5 units from the point $\mathrm{A}(5,-3)$.
Q. 22 If the points $\mathrm{A}(1,-2), \mathrm{B}(3,6) \mathrm{C}(5,10)$ and $\mathrm{D}(\mathrm{a}, \mathrm{b})$ are the vertices of a parallelogram taken in order. Find the point $D(a, b)$.
Q. 23 Prove that $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=\sin 60^{\circ}$.
Q. 24 Elevation of the bottom of the flag staff is 45° and the top of the flag staff is 60°. Determine the height of the tower and the horizontal distance.
Q. 25 Construct a triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\mathrm{AC}=7 \mathrm{~cm}$. Construct a triangle similar to triangle ABC sides are $\frac{4}{7}$ of the corresponding sides.

SECTION-D

Q. 26 Draw graph of the given equation of the same graph paper: $2 \mathrm{x}+3 \mathrm{y}=12, \mathrm{x}-\mathrm{y}=1$. Find the coordination of the vertices of the triangle formed by the two straight lines and the y axis.
Q. 27 D and E points on the side CA and CB respectively of a triangle ABC right angled at C . Prove that $\mathrm{AE}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{DE}^{2}$.

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Q. 28 Prove $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=2 \sec \theta \cdot \tan \theta+2 \tan ^{2} \theta$.

OR
Prove $\left(\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}\right)=\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2}=\tan ^{2} \mathrm{~A}$
Q. 29 A right circular cylinder having diameter 12 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled in cones of height 12 cm and diameter 6 cm having a hemispherical shape on the top. Find the number of such cones which can be filled with ice-cream.
Q. 30 To find out the concentration of SQ2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in certain city and is presented below;

Concentration of SO_{2} (in ppm)	$0.00-0.04$	$0.04-0.08$	$0.08-0.12$	$0.12-0.16$	$0.16-0.20$	$0.20-0.24$
Frequency	4	9	9	2	4	2

Find the mean concentration of SO_{2} in the air.
OR
Calculate the median from the following data:

Wages per week (in Rs.)	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of workers	4	6	10	20	10	6	4

