JAIPUR EDUCATION PLUS
 Not Just Education but Education Plus..
 (P.No. 51, First floorLane No. 3, Moti Nagar, Queen's Road)
 Mob.: 7615012588, 9929544574
 Email: jaipureducationplus@, mailcom
 www.jaipureducationplus.com

Practice Paper No. 3
 (Pattern of Secondary Education Board)

SECTION-A

Q. 1 Write rational number $\frac{33}{50}$ in terminating decimal exports without actually performing the long division.
Q. 2 For what value of k the following equation are inconstant? $x-4 y=6,3 x+k y=5$.
Q. 3 If 2, m, 99 in m A.P., find the value of m.
Q. 4 Find the distance between two points (a, b) and $(-a,-b)$.
Q. 5 Write the coordination of the point which dividês the line segment joining the point $\mathrm{A}(4$, $-3)$ and $B(9,7)$ in 3: 2 internally.
Q. 6 If tangent AB and AC from a point A to a circle with centre O are such that $\angle \mathrm{BAC}=50^{\circ}$, then write value of $\angle \mathrm{BOC}$.
Q. 7 Find the area of sector of an angle P° of a circle with radius R.
Q. 8 From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . Find the radius of circle.
Q. 9 A bag contains 8 red balls and 5 black balls. A ball is the probability that ball draw is red?
Q. 10 What is the probability that answer select from the numbers $1,2,3 \ldots 15$ is a multiple of 4.

SECTION-B

Q. 11 In figure, DE is parallel to base BC . If $\mathrm{AD}=2.5 \mathrm{~cm}, \mathrm{BD}=3.0 \mathrm{~cm}$ and $\mathrm{AE}=3.75 \mathrm{~cm}$. Find the length of AC.

Q. 12 BC and BD are tangents of the circle $\mathrm{C}(0, \mathrm{r})$ such that $\angle \mathrm{CBD}=120^{\circ}$. Prove that $B O=2 B C$.
Q. 13 In a circle of radius 21 cm . An arc substends an angle of 60° at the centre. Find the length of the arc.
Q. 14 PQRS is a diameter of a circle of radius 6 cm . The lengths PQ, QR and RS are drawn on PQ and QS as diameters, as shown in figure. Find the perimeter of the shaded region.

Q. 15 A bag contains 8 red balls and x blue balls, the odd against drawing a blue ball are $2: 5$. What is the value ofx?

SECTION-C

Q. 16 Using Euclid's division algorithm, find the H.C.F. of 56, 96 and 404.
Q. 17 Find the zeroes of the quadratic polynomials $x^{2}-2 x-8$ and verify the relationship between zeroes and coefficients.
Q. 18 A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$. in still water takes 1 hour more to go 24 km . upstream than to return downstream to the same spot. Find the speed of the stream.
Q. 19 Find the nature and root of the equation $x+\frac{1}{3}=3, x \neq 0$.
Q. 20 How many numbers of two digits are divisible by 7?
Q. 21 Show that the point $(1,5),(2,3)$ and $(-2,-11)$ are not collinear.
Q. 22 Find the ratio in which the segment joining $A(1,-5)$ and $B(-4,5)$ is divided by x-axis. Also find the coordination of the point of division.
Q. 23 If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the interior angles of a triangle ABC , show that $\sin \frac{\mathrm{B}+\mathrm{C}}{2}=\cos \frac{\mathrm{A}}{2}$.
Q. 24 A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six second later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
Q. 25 Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameters each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .
Q. 26 Solve the following system of equation graphically. $2 x-5 y+4=0$ and $2 x+y-8=0$. Find the points where the times meet the y-axis.
Q. 27 If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$ (see figure). Prove that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

Q. 28 Prove that $\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta$

OR
Prove that $\frac{\tan \mathrm{A}}{1-\cot \mathrm{A}}-\frac{\cot \mathrm{A}}{1-\tan \mathrm{A}}=1+\tan \mathrm{A}+\cot \mathrm{A}$
Q. 29 An iron pillar has some part in the form of a right circular cylinder and remaining in the form of a right circular cone. The radius of the base each of cone and cylinder is 8 cm . The cylindrical part is 240 cm high and the conical part is 36 cm high. Find the weight of the pillar of one cm^{3} of iron weighs 7.8 gram.
Q. 30 Calculate the arithmetic Mean of the following frequency distribution.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	12	15	11	20	14	15	13
OR							

Find the median for the following data:

Class interval	$0-50$	$50-100$	$100-150$	$150-200$	$200-250$	$250-300$
Frequency	6	9	14	10	12	9

